Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling.
نویسندگان
چکیده
Hyperthermophilic organisms must protect their constituent macromolecules from heat-induced degradation. A general mechanism for thermoprotection of DNA in active cells is unknown. We show that reverse gyrase, the only protein that is both specific and common to all hyperthermophiles, reduces the rate of double-stranded DNA breakage approximately 8-fold at 90 degrees C. This activity does not require ATP hydrolysis and is independent of the positive supercoiling activity of the enzyme. Reverse gyrase has a minor nonspecific effect on the rate of depurination, and a major specific effect on the rate of double-strand breakage. Using electron microscopy, we show that reverse gyrase recognizes nicked DNA and recruits a protein coat to the site of damage through cooperative binding. Analogously to molecular chaperones that assist unfolded proteins, we found that reverse gyrase prevents inappropriate aggregation of denatured DNA regions and promotes correct annealing. We propose a model for a targeted protection mechanism in vivo in which reverse gyrase detects damaged DNA and acts as a molecular splint to prevent DNA breakage in the vicinity of the lesion, thus maintaining damaged DNA in a conformation that is amenable to repair.
منابع مشابه
Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus
Reverse gyrase is a unique hyperthermophile-specific DNA topoisomerase that induces positive supercoiling. It is a modular enzyme composed of a topoisomerase IA and a helicase domain, which cooperate in the ATP-dependent positive supercoiling reaction. Although its physiological function has not been determined, it can be hypothesized that, like the topoisomerase-helicase complexes found in eve...
متن کاملNucleotide- and stoichiometry-dependent DNA supercoiling by reverse gyrase.
Reverse gyrase is a unique type IA topoisomerase that can introduce positive supercoils into DNA. We have investigated some of the biochemical properties of Archaeoglobus fulgidus reverse gyrase. It can mediate three distinct supercoiling reactions depending on the adenine nucleotide cofactor that is present in the reaction. Besides the ATP-driven positive supercoiling reaction, the enzyme can ...
متن کاملThe latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling
Reverse gyrase is the only topoisomerase that can introduce positive supercoils into DNA in an ATP-dependent process. It has a modular structure and harnesses a helicase-like domain to support a topoisomerase activity, thereby creating the unique function of positive DNA supercoiling. The isolated topoisomerase domain can relax negatively supercoiled DNA, an activity that is suppressed in rever...
متن کاملCrystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling
Reverse gyrase is an ATP-dependent topoisomerase that is unique to hyperthermophilic archaea and eubacteria. The only reverse gyrase structure determined to date has revealed the arrangement of the N-terminal helicase domain and the C-terminal topoisomerase domain that intimately cooperate to generate the unique function of positive DNA supercoiling. Although the structure has elicited hypothes...
متن کاملReverse gyrase, the two domains intimately cooperate to promote positive supercoiling.
Reverse gyrases are atypical topoisomerases present in hyperthermophiles and are able to positively supercoil a circular DNA. Despite a number of studies, the mechanism by which they perform this peculiar activity is still unclear. Sequence data suggested that reverse gyrases are composed of two putative domains, a helicase-like and a topoisomerase I, usually in a single polypeptide. Based on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 12 شماره
صفحات -
تاریخ انتشار 2004